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When effecting a classificational analysis of stochastic subjects Oy, j=:1,... N,
presented in the multidimensional space S={x,), i=1,...,n, the choice of
a ctiterion is a basic stage for the qualily of the deciding rule (discrimi-
nant function). Often the sum of the error probabilities from the Ist and
2nd genders serves as such a criterion. The minimum value of the sum is
attained by the Bayes criterion of the minimum risk. As we know [l], this
procedure, though well elaborated methodologically, entails considerable
calculation difficulties, especially when the number of classes Cy, &= 1, ..., M,
formed by O, is cousiderable. In this case, even the linearized Bayes pro-
cedures, or the linear discriminant functions lose their effect in general, be-
cause a great number of linear discriminani functions are needed [1].

The simplest approach is, of course, the one in which the diseriminant
function is defined by simple in form volumes in the mullidimensional
space S. Such could be, by way of example, mullidimensional parailelepi-
peds, spheres, ellipsoids, and the like. In this instance, the deciding rules
are simplified considerably, and in the case of the muliidimensional paral-
lelepiped they are reduced to a sysiem of simple inequations. On account
of such a simplitication of the deciding rule, the value of the risk function
R increases.

This paper treals the problem of optimization of the parameters of the
constaut limits (discriminant functions) of the classes in space S, in order
to obtain a minimum value of R (Naturally, this minimum value is bhigher
than the value which could be obtained by the Bayes discriminant pro-
cedure).

As we koow [3] in the general case the risk function has the follow-
ing form:

M oM :
(1) R= J 1.21 [meCmf(X/um)d(mX)d‘-’f]»
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where: X{x,...,x,) i8 the current vector-realization, Pm is the a
priori probability of the m-class subject appearance, f(X/um) is the density

of the probability of the n:-class subject appearance in the volume d.X - def,
I=1

is a paymeni-off matrix with elements C,,, equal to the price of {he error
when relating the x to the m-class, at the £-class subject availability.

Hya/ X} is a unit function, equal respectively to:

1, when X is in the region 7% of the k-class,

0, when X is in another region.

It is usually accepted that C,,=0, and that condition will be taken
info consideration in this paper later on.

Under the Bayes criterion of the minimum risk, regions [, depend on
the index m, i. e. I',-=7(m), and are determined by the equation:

(2) PeCon X 143) = P Copmn [ X ttm)-

Equation (2) shows that the minimum risk is attained by the introduc-
tion of flexible limits, depending on the pair of indices (k, at) of the coni-
parable classes. This condition makes the analysis complicated because, in
the general case, regions (m) are strongly nonlinear and multidimensional.

At constant limits and normal distribution f/x/u/, which we accept
further on, equation (1) has the form:
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K — covariational matrix.
In the general case, the limits a; and &5, of the mulidimensional
parallelepiped can change independently on one ancther. At the R optimi-
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zation by (3) this means the intrcduction of 2n parameters of the optimi-
zation. Further on we will accept the following limiting conditions:

(4) ai!_‘f”:'.f(l —(}),
bip=u:(1-4q),

i. . we accept that the limiting surface of the j-class is a parallelepiped
which is centrally symmetric to the point described by the tip of the vector,
4y, and its magnifude changes with one and the same coefiicient of pro-
portion ¢ along all the axes of the space S. Under this condition, it is seen
in (3b) that /, is a monotonously decreasing function of ¢, when the va-
lues of ug, K, M are fixed, because the normal distribution is positively
defined in the multidimensional volume (--o0, c0)" and to each dg corres-
ponds an increase of the integration region volume of the integral in (3b),
and 4/, <0 is accordingly obtained.

Analogously, we obtain from (3a) that /, is a monotonously increasing
function of ¢.

Also, the following limit relations follow from (3a) and (3b):
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and therefore, because of monoionous change of f; and [, and since

(5) anax = lim R: lim f.z oz R(q — O)’
groe

g0

then relations {5) show that in the region (—co, c0)" the risk tunction R
has at least one misimum. The values of g, which correspond to Ram, can
be determined by the equation

(6) ORjdg=0.

In the relatively simple case, when signs x; describing the subjects O;
of a given class are independent on one another, i. e. when the covaria-
tional matrix of the class is diagonal, the multiple integrals in (3) are given
as a product of one-fold integrals, and a possibility is offered for condi-
tion (6) to be obtained by differentiation under the sign of a one-fold in-
tegral. Then we obtain for (6):
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It is obvious from (6a) that the direct determination of the dependence
R{q} by the equation (3) should probably prove to be easier, even in this
simplified case, than the solution of (6a), or of (6) respectively. For that
purpose it is appropriate to calculate the integrals in (3a) by the Monte
Carlo method, which in this case offers considerable simplification, because
the integration regions are simple volume-parailelepipeds orientated along
the coordinate axes,

The deciding rule at constant limits, defined by a multidimensional
parallelepiped, is reduced to a verification of the inequation system:

(7} a,'jfﬂxgﬂb”, .:'::I,...,ﬂ, f—_—l,...,M,

where X{x,,..., x,) is a vector-realization, subject to classification.

If (7) is salistied for certain j and for all 4, it is accepted that x be-
longs to the j-class of the multitude M.

The mean risk function (averaged for all the meanings of j) is deter-
mined under this deciding rule by equation (3); it can be obtained also by
{3) only for the j-class, though without summing along index j.

If the change of the limits g;, and b,, of the multidimensional paral-
lelepiped occurs depending on more than one parameter, then equation (6)
is transformed into a system of partial derivatives of R towards these pa-
rameters,

Of course, the deciding rule with constant limits can be applied and
can be optimized for other relatively simple limiting surfaces, as for example
a multidimensional sphere, an ellipsoid, etc. In this case inequation (7) would
become more complicated. Some complications would also appear in the
calculation of R by (8). It is possible that the complexity of the deciding
rule should become commensurable with the linear deciding rules.

On account of the rather great simplification of the deciding rule at a
multidimensional parallelepiped, the risk R at the classificational analysis
increases. If an acceptable risk Ry is given, this risk in the general case
will be realized with the greatest number of signs, i. e. the dimensionality
of § would be greatest, under a deciding rule based on a multidimensional
parallelepiped. This compromise would probably be acceptable at consider-
able data files, where it could happen that if was more profitable ecomo-
mically to measure more signs x; but needing considerably lesser time of
computing analysis. In particular, such a situation can appear when study-
ing the natural formations of the FEarth surface according to spectral
reflective characteristics, In that case, to obtain data by a greater number
of wavelengihs would involve a single complication of the equipment for
obtaining reflective characteristics (increase in the number of channels for
obtaining spectral information). This single complication of the design would
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be compensated by ifs multiple applications in collecting and processing
considerable data files,

Equation (3) shows that the risk function depends on the number M
of the classes and increases with the increases of A, That is why it is
convenient to introduce the quantity “relafive risk” for the comparative
analysis of different in volume sets of classes:
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Taking into consideration eguation (5), we find that & changes in the
inferval 0<¢=<(.5, The value :=0.5 corresponds to the maximum indeter-
minacy in the class: identification. The same value is obtained not only when
the region determining the limjts of the classes is with a zero volume or,
respectively, is infinitely great, but also when all the distributions are equal.
In this case we also have complete indeterminacy.

The maximum indeterminacy is obtained also in the case when M — co,
This is due to the fact that in equation (3) the integral values tend toward
zero, because in the constant volume of integration there is a part of the
infinite normal multidimensional distribution which tends toward zero.
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OntuMuzanys napasieneninegHol AUCKPUMHHEAHTHON
(YHKIMH B MHOTOMEDHOM AHAJHM3E

T. K. Hres

{Pesome)

[pn xaaccndrxalluy CTOXACTHYECKHX OOTBEKTOB OCHOBHHIM KDHTEDHEM TOY-
HOCTH xaAaccHpuKauuu sBAfeTcd (QYRKUU# pucKa. B nacrosmem pabore nc-
cleA0BaHA npofremMa MHHUMH3AUHH QYHKIUM DHCKE, XOTAd FPAHHUL KJAACCOB
CTOXaCTHYeCKHX OOBEKTOR NPHHHMAIOTCA 34 MHOIOMEpHHE MapaljefenHneLhl.
[lponenypa MHHUMH3ALMY OXBATHIBAST NAPAMETPRl STHX Mapai/e/eHHneROB.

51





